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Abstract
We present other special functions s(t) leading to the extensions of the principal
symmetry algebra (infinite-dimensional) which were not included in our article
(Güngör F 2001 J. Phys. A: Math. Gen. 34 4313–4321).

PACS numbers: 02.20.-a, 02.30.Gp, 02.30.Hq, 02.30.Jr

Recently, we investigated symmetry properties for the two-dimensional generalized Burgers
equation [1]

(ut + uux − uxx)x + s(t)uyy = 0 s(t) �= 0. (1)

We showed that, for an arbitrary s(t), equation (1) is invariant under an infinite-dimensional
Lie algebra whose general element is represented by

V = X(f ) + Y (g) (2a)

X(f ) = f (t)∂x + f ′(t)∂u (2b)

Y (g) = g(t)∂y − g′(t)
2s(t)

y∂x −
(

g′(t)
2s(t)

)′
y∂u (2c)

where f (t) and g(t) are arbitrary smooth functions and the primes denote time derivatives.
The commutation relations are

[X(f1), X(f2)] = 0 [X(f ), Y (g)] = 0

[Y (g1), Y (g2)] = X

(
1

2s
(g′

1g2 − g1g
′
2)

)
(3)

where [. , . ] is the Lie bracket. In particular, we showed that the above algebra is further
extended in the cases:

Case 1. s(t) = σ tα , σ = constant (case I in [1]).

Case 2. s(t) = σeαt , σ = constant (case II in [1]).
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1806 Addendum

In this addendum, we would like to point out that, in addition to the above cases, there are
further specific functions s(t) for which the symmetry algebra contains one additional basis
element. The functions s(t) and corresponding additional generators are presented below:

Case 3. s(t) = σ(1 + t2)−3/2 exp(2α arctan t):

C1 = xt∂x + αy∂y + (1 + t2)∂t + (x − tu)∂u. (4)

The nonzero commutation relations satisfy

[X(f ), C1] = X(tf − (1 + t2)f ′) [Y (g), C1] = Y (αg − (1 + t2)g′). (5)

Case 4. s(t) = σ t−3 exp(α/t), α �= 0:

C2 = xt∂x − 1
2αy∂y + t2∂t + (x − tu)∂u. (6)

The nonzero commutation relations satisfy

[X(f ), C2] = X(tf − t2f ′) [Y (g), C2] = −Y ( 1
2αg + t2g′). (7)

The subcase α = 0 is exceptional in that there are two additional generators:

C = xt∂x + t2∂t + (x − tu)∂u D = D−3 = x∂x − 3
2y∂y + 2t∂t − u∂u (8)

with nonzero commutators
[C, D] = −2C [X(f ), C] = X(tf − t2f ′) [Y (g), C] = −Y (t2g′)
[X(f ), D] = X(f − 2tf ′) [Y (g), D] = Y (− 3

2g − 2tg′).
(9)

Case 5. s(t) = σ(1 − t2)−3/2
( 1 + t

1 − t

)α

:

C3 = xt∂x − αy∂y + (t2 − 1)∂t + (x − tu)∂u. (10)

The nonzero commutation relations satisfy

[X(f ), C3] = X(tf + (1 − t2)f ′) [Y (g), C3] = Y (−αg + (1 − t2)g′). (11)

Case 6. s(t) = σ tα(t + β)−α−3, α �= −3, β �= 0:

C4 = C + 1
2βDα Dα = x∂x + (α + 3

2 )y∂y + 2t∂t − u∂u (12)

and C is as in equation (8). The nonzero commutation relations satisfy

[X(f ), C4] = X
(
(t + 1

2β)f − t (t + β)f ′)
[Y (g), C4] = Y

(
1
4β(3 + 2α)g − t (t + β)g′). (13)

We remark that this list completes all possible forms of s(t) extending (2a) by one or two
generators. Using the commutation relations (5), (7), (9), (11) and (13) we can easily verify
that a general element of the symmetry algebra X(f )+Y (g)+pCa (a = 1, 2, 3, 4) is conjugate,
under the adjoint action of the symmetry group of the equation, to Ca if p �= 0, and either to
Y (g) or X(f ) otherwise (see [1] for details). Moreover, requiring that Ca be embedded into
a two-dimensional Lie subalgebra of the symmetry algebra, reductions of (1) with the new
coefficients s(t) listed above (cases 3–6) to ordinary differential equations (actually second
order) can be performed and hence new exact solutions invariant under two-dimensional Lie
point groups can be constructed.
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